В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь...

0 голосов
95 просмотров

В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь треугольника CNM равна 89. Найдите пожалуйста площадь четырехугольника ABMN


Геометрия (24 баллов) | 95 просмотров
0

Могу помочь.

Дано ответов: 2
0 голосов
Правильный ответ

....................

(56.7k баллов)
0

Огромное спасибо. Теперь я поняла как решать.

0 голосов

MN - средняя линия треугольника ABC, по теореме о средней линии NM=AB/2 => 2NM=AB Проведем высоту из вершины С. SCNM=1/2*CE*NM=89 (по условию).CE*NM=178 Рассмотрим треугольник ACD, NE||AD и идет из середины стороны AC, следовательно NE - средняя линия для треугольника ACD, значит CE=ED. ABMN - трапеция (по определению), тогда SABMN=(NM+AB)/2*ED. Подставляем ранее выявленные равенства, получаем: SABMN=(NM+2NM)/2*CE=3NM/2*CE=1,5NM*CE=1,5*178=267

(14 баллов)