- 5sin2x - 16(sinx-cosx) + 8 = 0
Пусть sinx - cosx = t, преобразуем для sin2x:
(sinx - cosx)^2 = t^2
1 - sin2x = t^2
sin2x = 1 - t^2
Следовательно, у нас вышло уравнение относительно замены.
Решим его:
- 5(1 - t^2) - 16t + 8 = 0
- 5 + 5t^2 - 16t + 8 = 0
5t^2 - 16t + 3 = 0
(5t - 1)*( t - 3) = 0
t = 1/5
t = 3
Выполним обратную замену
1)
sinx - cosx = 3
нет решений (пустое множ-во)
2)
sinx - cosx = 1/5
Возведём обе части уравнения в квадрат
1 - 2sinxcosx=1/25
sin2x = 24/25
sin2x = 0,96
2x = arcsin 0,96 + 2pik
x = 1/2*arcsin 0,96 + pik
2x = pi - arcsin 0,96 + 2pik
x = 1/2*(pi - arcsin 0,96) + pik
ОТВЕТ:
x = 1/2*arcsin 0,96 + pik, k ∈ Z
x = 1/2*(pi - arcsin 0,96) + pik, k ∈ Z