В оранжерее было срезано 360 гвоздик. Причем красных ** 80 больше, чем белых, а розовых...

0 голосов
99 просмотров

В оранжерее было срезано 360 гвоздик. Причем красных на 80 больше, чем
белых, а розовых на 160 штук меньше, чем красных. Какое наибольшее число
одинаковых букетов можно составить из этого количества цветов? Сколько и каких
цветов было в каждом букете.

(Пожалуйста с решением)



Спасибо заранее!!!


Алгебра (26 баллов) | 99 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

Пусть белых было х шт, тогда красных х+80, а розовых (х+80)-160=х-80
Всего было 360
х+(х+80)+(х-80)=360
3х=360
х=120 - белых
120+80=200 красных
120-80=40 розовых
Поскольку в условии есть слово  ОДИНАКОВЫХ, то значит наибольшее число будет равно наименьшему кол-ву цветов, т.е. 40
Узнаем, сколько цветов в каждом букете
120 : 40 = 3 шт. - белых
200 : 40 = 5 шт. - красных
40 : 40 = 1 шт. розовая
Ответ. 40 одинаковых букетов, в каждом из которых 3 белых, 5 красных и 1 розовая розы

(130k баллов)
0 голосов

K - красные, b - белые, р - розовые

\left \{ {{k+b+p=360} \atop {k-b=80}} \atop {k-p=160}} \right.

Сложим все три уравнения:

3k=600 \\ k=200 \\ \\ b=k-80=120 \\ p=k-160=40

Наибольшее количество букетов будет равно наименьшему количеству цветов, т.е.40.

b=120:40=3 \\ k=200:40=5 \\ p=40:40=1

(18.9k баллов)