Log2(sin^2(x)) + log2(2) = log2(sinx+1)
log2(2sin^2(x)) = log2(sinx+1)
ОДЗ: sinx>0, sinx+1>0
sinx>0, 2πk
2sin^2(x) = sinx + 1
2sin^2(x) - sinx - 1 = 0
sinx = t∈[0;1]
2t^2 - t - 1 = 0, D=9
t1 = (1 - 3)/4 = -2/4 = -1/2<0<br>t2 = (1+3)/4 = 4/4 = 1
sinx=1
x=π/2 + 2πk