x\in\left(-\infty;-2\right)\bigcup\left(-2;0\right)\bigcup\left(0;+\infty\right);\\
\frac{1}{x^2}+\frac{1}{(x+2)^2}-\frac{10}{9}=0;\\
\frac{9(x+2)^2+9x^2-10x^2(x+2)^2}{9x^2(x+2)^2}=0;\\
9(x+2)^2+9x^2-10x^2(x+2)^2=0;\\
9(x^2+4x+4)+9x^2-10x^4-40x^3-40x^2=0;\\
-10x^4-40x^3-40x^2+18x^2+36x+36=0;\\
10x^4+40x^3+22x^2-36x-36=0;\\
x=1:10+40+22-36-36=72-72=0;\\
" alt="\frac{1}{x^2}+\frac{1}{(x+2)^2}=\frac{10}{9};\\
D(f):x\neq0\bigcup x\neq-2==>x\in\left(-\infty;-2\right)\bigcup\left(-2;0\right)\bigcup\left(0;+\infty\right);\\
\frac{1}{x^2}+\frac{1}{(x+2)^2}-\frac{10}{9}=0;\\
\frac{9(x+2)^2+9x^2-10x^2(x+2)^2}{9x^2(x+2)^2}=0;\\
9(x+2)^2+9x^2-10x^2(x+2)^2=0;\\
9(x^2+4x+4)+9x^2-10x^4-40x^3-40x^2=0;\\
-10x^4-40x^3-40x^2+18x^2+36x+36=0;\\
10x^4+40x^3+22x^2-36x-36=0;\\
x=1:10+40+22-36-36=72-72=0;\\
" align="absmiddle" class="latex-formula">
значит имеем лишь 2 корня
х=1 и х=-3проверим решения