Рассмотрим произвольный равнобедренный треугольник АВС с основанием АВ.
Пусть одна высота из угла А- это АК, а из угла В- ВМ.
Рассмотрим треугольники АМВ и АКВ.
у.(угол) А=у. В (т.к. треугольник АВС равнобедренный)
у. АМВ= у. АКВ (т.к. АК и ВМ- высоты; у. АМВ= у. АКВ= 90)
Из теоремы о сумме углов треугольника следует, что:
у. АМВ+ у. А+ у. МВА= 180
у. АКВ+ у. В+ у. КАВ= 180
Но у. АМВ= у. АКВ и у. А=у. В. Значит у. МВА=у. КАВ.
АВ- общая сторона, а значит равная в обоих треугольниках.
треугольник АМВ = треугольнику АКВ (по стороне и двум прилежащим к ней углам)
В равных треугольниках соответственные элементы равны, следовательно:
АК=МВ.
ЧТД