Сечение полушара плоскостью "другого" основания - это (само собой) окружность, причем это окружность, описанная вокруг правильного треугольника, который является этим основанием.
Радиус этого сечения r, высота призмы h (то есть расстояние от центра шара до плоскости сечения) и радиус шара R = 8 связаны теоремой Пифагора, то есть
r² = R²-h²;
Сторона правильного треугольника связна с радиусом описанной окружности известным элементарным соотношением
r²= a²/3, а²=3r²;
а площадь S основания призмы равна
S = a²*√3/4 = r²*3√3/4 = (3√3/4)*(R²- h²);
Объем, само собой, равен
V = S*h = (3√3/4)*(R²-h²)*h;
В точке экстремума
V'(h) = (3√3/4)*(R²- 3*h²) = 0; то есть h = R/√3;
Поскольку V(h) = 0; при h = 0 и h = R; V(h) > 0 при 0 < h < R; и экстремум только один, то экстремум - это максимум. Значение V в точке максимума равно V = R³/2=8³/2=256