Найдите наименьшее значение квадратного трехчлена x^2-6x+11 (с вычислениями)

0 голосов
166 просмотров

Найдите наименьшее значение квадратного трехчлена x^2-6x+11 (с вычислениями)


Алгебра (15 баллов) | 166 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

График квадратного трехчлена, является парабола. Так как коэффициент перед x^2 положителен, то ветви направлены вверх. Следовательно, у данной параболы, вершина является минимумом. 

Найдем вершину:
x=- \frac{b}{2a} =- \frac{-6}{2} =3
y=3^2-6*3+11=2

Следовательно, наименьшее значение квадратного трехчлена является 2, при x=3.

Можно так же найти наименьшее значение, через производную:
(x^2-6x+11)'=2x-6

Решаем производную:
2x-6=0 \Rightarrow x=3

Следовательно, критическая точка лишь одна. Узнаем, является ли она минимумом или максимумом.
Для этого, на координатной прямой, обозначим точку 3, и выделим 2 интервала с их знаками:
(-\infty,3] \\2x-6\Rightarrow -

[3,+\infty) \\2x-6\Rightarrow +

Следовательно:
y_{\min}=y(3)=2 



(46.3k баллов)