Гипотенуза прямоугольного треугольника равна корень из 34 один из катетов составляет 60% от другого, найдите катеты, биссектрису прямого угла и высоту опущенную на гипотенузу
Гипотенуза с=√34, катет в=0,6а. с²=а²+в². 34=а²+0,36а² а²=34/1,36=25, катет а=5, катет в=0,6*5=3. Высота н=ав/с=5*3/√34=15/34. Биссектриса l=√2*(ab/(a+b))=√2*(5*3/(5+3))=15√2/8
1) треугольник АВС ВС - гипотенуза угол А - прямой 2) пусть тогда 3) AH - высота 4) AK - биссектриса Ответ: