Окружность, вписанная в равнобедренный треугольник АВС, касается основания АС в точке М и...

0 голосов
36 просмотров

Окружность, вписанная в равнобедренный треугольник АВС, касается основания АС в точке М и боковой стороны в точке N. Отрезки ВМ и СN пересекаются в точке К. Найти радиус окружности, вписанной в треугольник АВС, если известно, что АВ=5 и СК:КN=5:1.


Геометрия (129 баллов) | 36 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

P - точка касания BC с окружностью.  
Ясно, что NP II AC;
из подобия РАВНОБЕДРЕННЫХ треугольников NPK и AKC NP/AC = KN/CK =1/5;
из подобия равнобедренных треугольников NPB и ABC BP/BC = NP/AC = 1/5;
то есть  BP = BN = 1; AN = AM = MC = CP = 4; 
AC = 8; AB = BC = 5;
BM делит ABC на два "египетских" треугольника (3,4,5), то есть BM = 3;
R = 5*5*8/(4*8*3/2) = 25/6;

Опять таки теорема Ван-Обеля CP/PB + CM/AM = CK/KN; тут же дает CP/PB = 4; то есть CP = 4; PB = 1; в этой задачке получить это "обычным" способом тоже не сложно, но это опять "обходной" путь.

(69.9k баллов)