Находим производную
у'=2(x-5)(x+3)+(x-5)²
Приравниваем ее к нулю
2(x-5)(x+3)+(x-5)²=0
(x-5)(2(x+3)+(x-5))=0
(x-5)(2x+6+x-5)=0
(x-5)(3x+1)=0 Произведение равно нулю, когда хотя бы один из множителей равен 0
1) x-5=0 x₁=5 2) 3x+1=0 x₂=-1/3
Определяем знак производной:
(-бес-ть; -1/3) у'>0
(-1/3;5) y'<0<br>(5;+бес-ть) y'>0
Следовательно, в -1/3 максимум, в 5 минимум.
Находим у
у=(х-5)²(х+3)-2=(5-5)²(5+3)-2=-2
Точка минимума (5;-2)