1) Найти координаты точек графика функции , в которых касательная параллельна оси...

0 голосов
71 просмотров

1) Найти координаты точек графика функции , в которых касательная параллельна оси x
f(x)=2x^5-5x^2+1

2)Написать уравнение касательной функции в точке :
a) f(x)=x^3-2x^2+1 , x0=2
б) f(x)= корень из x +2 , x0=9


Математика (19 баллов) | 71 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

1) Координаты точек графика функции , в которых касательная параллельна оси x, находятся при производной заданной функции, равной нулю.
Производная функции f(x)=2x^5-5x^2+1 равна 10х⁴-10х, приравниваем её нулю: 10х⁴-10х = 0   или 10х(х³-1) = 0. Разложим множитель в скобках:
10х(х-1)(х²+х+1) = 0. Решения: 10х = 0   х₁ = 0      х-1 = 0    х₂ = 1
х²+х+1 = 0 - нет решения.
Координаты точек графика функции , в которых касательная параллельна оси x (0; 1) и (1; -2).
2) Решение в приложении.

(309k баллов)