1)ОДЗ
x²-55x+90>0
D=3025-360=2665
x1=(55-√2665)/2 u x2=(55+√2665)/2
+ _ +
__________________________________
(55-√2665)/2 (55+√2665)/2
x<(55-√2665)/2 U x>(55+√2665)/2
x-36>0⇒x>36
x∈(36;∞)
0,5[lg(x²-55x+90)-lg(x-36)]=0,5lg2
0,5[lg(x²-55x+90)/(x-36)]=0,5lg2
lg(x²-55x+90)/(x-36)=lg2
(x²-55x+90)/(x-36)=2
x²-55x+90-2x+72=0
x²-57x+162=0
x1+x2=57 U x1*x2=162
x1=3∉ОДЗ
x2=54
2)2tg³x-2tg²x+3tgx-3=0
2tg²x(tgx-1)+3(tgx-1)=0
(2tg²x+3)(tgx-1)=0
2tg²x+3>0 при любом х
tgx=1
x=π/4+πn