1.у нас две медианы, каждая из них делится точкой пересечения в отношении 2:1 считая от вершины.
Т.е. Каждую медиану разделили на три части, две части от вершины до точки пересечения и одна от точки пересечения до стороны
МР=12; делим на три, получаем 12:3=4-одна часть, 4*2=8-две части, т.о. МО=8, ОР=4
NE=15; делим на три, получаем 15:3=5 -одна часть, 5*2=10 -две части, т.о. NО=10, ОЕ=5
Теперь треугольник МОЕ, он прямоугольный, с катетами 8 и 5 , площадь прямоугольного треугольника равна половине произведения катетов, т.е. 8*5:2=20
2.точки пересечения медиан делит стороны в отношении 2:1.то есть МО=10,ОЕ=10/3.третью сторону находим по теореме Пифагора,т.к. по условию МР перпендик.к NE.и она будет равна √10²+(10/3)²=10√10/3P=10√10/3+10+10/3=10×(4+√3)/3