Точка M лежит внутри равностороннего треугольника со стороной 8 корень из 3.Известно, что...

0 голосов
63 просмотров

Точка M лежит внутри равностороннего треугольника со стороной 8 корень из 3.Известно, что расстояния от точки M до двух сторон данного треугольника равны 5. На каком расстоянии лежит точка M от третьей стороны?


Геометрия (163 баллов) | 63 просмотров
0

расстояние от M до той вершины, где эти две стороны пересекаются, равно 10, а высота равна 4√ 3; это меньше 10, так что M лежит вне треугольника.

0

может 8√ 3?

0

тогда высота 12, и третье расстояние 2.

Дан 1 ответ
0 голосов
Правильный ответ

1 способ.  Пусть по условию задачи: треугольник АВС – правильный, МК, МР, МЕ – расстояния до сторон треугольника (соответственно до АВ, ВС, АС). МК=МР=5. АВ=ВС=АС=8√3
Надо найти расстояние МЕ.
Если треугольник АВС – правильный, то Sabc=AB²*√3/4=(8√3)²*√3/4=48√3
Площадь треугольника равна сумме площадей 3 треугольников АВМ, ВСМ и АСМ: Sabc=Sabm+Sbcm+Sacm
Sacm=Sabc-Sabm-Sbcm
Sabm=Sbcm (стороны и высоты треугольников равны, то их площади тоже равны)
Sacm=Sabc-2Sabm=48√3-1/2*АВ*МК=48√3-2*1/2*8√3*5=8√3
Sacm=1/2*АС*МЕ, 
МЕ=2Sacm/АС=2*8√3/8√3=2

2 способ 
Sabc=Sabm+Sbcm+Sacm
1/2*АВ*h=1/2*АВ*МК+1/2*ВС*МР+1/2*АС*МЕ
т.к. стороны треугольника равны АВ=АС=ВС, то
АВ*h=АВ*МК+АВ*МР+АВ*МЕ
h=МК+МР+МЕ
Формула длины высоты равностороннего треугольника
h=а√3/2=8√3*√3/2=12
МЕ=h-МК-МР=12-5-5=2

(101k баллов)