0\\x\in(-3;\;1)\Rightarrow y'(x)<0\\x\in(1;\;+\infty)\Rightarrow y'(x)>0" alt="3.\;a)\;y=x^3+3x^2-9x\\y'=3x^2+6x-9\\3x^2+6x-9=0\\x^2+2x-3=0\\D=4+4\cdot3=16\\x_1=-3;\;\;\;x_2=1\\x\in\left(-\infty;-3\right)\Rightarrow y'(x)>0\\x\in(-3;\;1)\Rightarrow y'(x)<0\\x\in(1;\;+\infty)\Rightarrow y'(x)>0" align="absmiddle" class="latex-formula">
(-3; 27) - точка максимума, (1; -5) - точка минимума.
0\\x\in(1;\;+\infty)\Rightarrow y'(x)<0" alt="b)\;y=3x^2-2x^3+6\\y'=-6x^2+6x\\-6x^2+6x=0\\x^2-x=0\\x(x-1)=0\\x_1=0;\;x_2=1\\x\in(-\infty;0)\Rightarrow y'(x)<0\\x\in(0;\;1)\Rightarrow y'(x)>0\\x\in(1;\;+\infty)\Rightarrow y'(x)<0" align="absmiddle" class="latex-formula">
(0; 6) - точка минимума, (1; 7) - точка максимума.
В первом случае корень чётной степени, потому подкоренное выражение должно быть неотрицательным. Во втором степень нечётная, потому подкоренное выражение может быть и положительным, и отрицательным, и нулевым.
Ответ 1).