Подобие получившихся прямоугольных треугольников доказывается легко: прямоугольные треугольники с двумя вертикальными ((равными))) углами --- подобны по двум углам... запишем соответствующую пропорцию: ВВ1 / СС1 = АВ1 / АС1 = АВ / АС (((гипотенузы всегда пропорциональны...))) последнее равенство можно переписать так: АВ1 / АВ = АС1 / АС ведь в пропорции произведение крайних членов = произведению средних членов))) значит произведение средних членов можно записать АС1*АВ = АВ*АС1 ведь от перестановки сомножителей произведение не меняется... т.е. равенства тождественно верны))) но второе равенство читается так: стороны треугольника АВ1С1 пропорциональны сторонам треугольника АВС (((две стороны))), но углы между этими сторонами равны (((как вертикальные))) --- имеем второй признак подобия треугольников... треугольники АВ1С1 и АВС подобны)))))
"но углы между этими сторонами равны (((как вертикальные)))" - две стороны пропорциональны, а угол между ними общий (тупой)...
не поняла...