По определению
1) На [2; +∞) рассматриваем функцию у=2х-3х²+х-2
или у=-3х²+3х-2 - квадратичная функция, графиком является парабола, ветви которой направлены вниз так как коэффициент при х² равен -3.
Такая парабола наибольшее значение принимает в вершине.
Вершина параболы точка с координатами х₀=-b/2а=1/2
Но точка х₀=3/4 не принадлежит рассматриваемому промежутку [2:+∞), а расположена левее, значит на [2;+∞) убывает и наибольшее значение принимает в точке х=2 у(2)= -3(2)² +3(2)-2=-8
2) на (-∞;2) рассматриваем функцию у=2х-3х²-х+2 или
у=-3х²+х+2.
Графиком этой функции также является парабола, ветви параболы направлены вниз.
Найдем абсциссу вершины параболы х°₀=1/6
Точка принадлежит рассматриваемому интервалу, значит наибольшее значение функция принимает в точке 1/6
у(1/6)=-3·(1/6)²+1/6+2=2 + 1/12
Наибольшее значение функции при х=1/6 равно 2 + 1/12=25/12