Обозначим эти числа за a, b и c.
Имеем
(1000a+b)/c=3*(ab/с)
а значит 1000a+b=3ab
Так как правая часть полученного равенства делится на a, значит , левая
часть тоже делится на a, т.е. b = k*a, где k - натуральное число .
Получаем 1000а+ка=3ка*а
1000+к=3ка
Обратим внимание, что k не превосходит 9, так как a и b — трехзначные
числа, а 1000+к делится на 3.
Значит, возможны только варианты к=2, к=5, к=8
Если к=2 , то а=167, b=334 , а c=27889 или c=55778 (других пятизначных
делителей у ab нет).
Если k = 5, то a = 67, что противоречит условию.
Если k = 8, то a = 42, что противоречит условию.
Ответ: эти числа 167, 334 и 27889 или 167, 334 и 55778.