y = x^3 - 3x^2 + 3x +2
y' = (x^3 - 3x^2 + 3x +2)' = 3x^2-6x+3 =3(x^2-2x+1) = 3(x-1)^2
y' ≥ 0 при любом значении х ∈ ]-∞;∞[
значит у возрастает на промежутке х ∈ ]-∞;∞[
на отрезке (2 ; 5) функция у возрастает
у(2) = 2^3 - 3*2^2 + 3*2 +2 = 4 минимум
у(5) = 5^3 - 3*5^2 + 3*5 +2 = 67 максимум