В треугольнике ABC внешние углы при вершинах A и B равны. Докажите , что 2AC больше AB.
Если внешние углы при вершинах равны, то и внутренние углы, как смежные с внешними, равны.
Следовательно, углы А и В равны и треугольник АВС равнобедренный с основанием АВ.
Одно из основных свойств треугольника гласит :
Любая сторона треугольника меньше суммы двух других сторон и больше их разности.
Так как АС=ВС, 2 АС=АС+ВС.
АС+ВС больше стороны АВ, иначе треугольник не мог бы получиться - стороны просто не сошлись бы и не образовали третий угол.
Следовательно, 2 АС больше АВ, что и требовалось доказать.