Исследовать сходимость числового ряда: 2/3+4/9+6/27+8/81+.... по признаку Даламбера

0 голосов
328 просмотров

Исследовать сходимость числового ряда: 2/3+4/9+6/27+8/81+.... по признаку Даламбера


Алгебра (334 баллов) | 328 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

Данный ряд сходится по признаку Даламбера, так как предел отношения(n+1)-го члена к п-ному члену  ряда меньше 1 (это условие сходимости)

Определяем. что n-ый член последовательности данного ряда равен 2n/3^n ......


image
(20.8k баллов)
0 голосов

ВОБЩЕ ЭТО ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИЯ РАЗНОСТЬ КОТОРОЙ РАВНА 2/3 . ПЕРВОЕ ЧИСЛО ЧИСЛОВОГО РЯДА РАВНО РАЗНОСТИ ПРОГРЕССИИ А ЗНАЧИТ КАЖДЫЙ ПОСЛЕДУЮЩИЙ ЧЛЕН ПРОГРЕССИИ РАВЕН 2 В СТЕПЕНИ N/3 В СТЕПЕНИ N ИЛИ (2/3) В СТЕПЕНИ N

(2.7k баллов)
0

Нет, Таня, если уж говорить о прогрессиях, то тут смесь получается))) В числителе - арифметическая прогрессия (прибавляется двойка, а не умножается на нее), в знаменателе - геометрическая (тут, да, умножается на 3)