6sin²x + sinxcosx - cos²x = 0
6sin^2x+sinxcosx-cos^2x=0 -(cosx-3sinx)(cosx+2sinx)=0 (cosx-3sinx)(cosx+2sinx)=0 cosx-3sinx=0 cosx+2sinx=0 ctgx=3 2sinx=-cosx x=arcctg(3)+πn; n∈Z 2tgx=-1 tgx=-1/2 x=arctg(-1/2)+πn; n∈Z
Разделим на cos²x≠0 6tg²x+tgx-1=0 tgx=a 6a²+a-1=0 D=1+24=25 a1=(-1-5)/12=-1/2⇒tgx=-1/2⇒x=-arctg1/2+πn a2=(-1+5)/12=1/3⇒tgx=1/3⇒x=arctg1/3+πn