Найти площадь фигуры, ограниченной линиями y= - x^2+36 , y= x^2-36

0 голосов
40 просмотров
Найти площадь фигуры, ограниченной линиями y= - x^2+36 , y= x^2-36




Математика (25 баллов) | 40 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Вначале найдем точки пересечения графиков, чтобы определить пределы интегрирования.
1) -x^{2}+36=x^{2}-36
2x^{2}=36*2
x^{2}=36
x_{1}=-6, x_{2}=6
2) Площадь фигуры находится как интеграл разности "верхней" функции и "нижней" в пределах от -6 до +6:
\int\limits^6_{-6} {(-x^{2}+36-x^{2}+36)} \, dx=\int\limits^6_{-6} {(-2x^{2}+36*2)} \, dx=-2*\int\limits^6_{-6} {(x^{2}-36)} \, dx=-2*( \frac{x^{3}}{3}-36x)|^{6}_{-6}=-2*(\frac{216}{3}-216+\frac{216}{3}-216)=-2*(144-432)=576

Ответ: 576

(63.2k баллов)