Пусть скорость велосипедиста, пришедшего к финишу вторым - х, а скорость велосипедиста, пришедшего первым - (х+6). ⇒ 140/x-140/(x+6)=3 140*(x+6)-140*x=3*x*(x+6) 140x+840-140x=3x²+18x 3x²+18x-840=0 |÷3 x²+6x-280=0 D=1156 x₁=14 x₂=-20 ∉ Ответ: скорость велосипедиста, пришедшего к финишу вторым 14 км/ч.
Решим задачу на нахождение времени, скорости, расстояния Дано: S=140 км v₁=v₂+6 км/час t₁=t₂ - 3 ч Найти: v₂=? км/час Решение 1) Пусть скорость второго велосипедиста равна v₂=х км/час, тогда скорость первого составляет v₁=v₂+6=x+6 км/час. Первый велосипедист проехал на 3 часа меньше второго и всего был в пути: t(время)=S(расстояние)÷v(скорость) = 140/(х+6) часов. Второй велосипедист затратил на 3 часа больше и был в пути: 140/х часов. Составим и решим уравнение: 140/х - 140/(х+6)=3 (умножим все члены на х(х+6), чтобы избавиться от дроби) 140×х(х+6)/х - 140×х(х+6)/(х+6)=3×х(х+6) 140(х+6)-140х=3х²+18х 140х+840-140х=3х²+18х 3х²+18x-840=0 D=b²-4ac=18²-4×3×(-840)=324+10080=10404 (√D=102) х₁=(-b+√D)/2a=(-18+102)/2×3=84/6=14 (км/час) х₂=(-b -√D)/2a=(-18-102)/2×3=-120/6= - 20 (х₂<0 - не подходит)<br>Значит скорость второго велосипедиста, пришедшего к финишу вторым (на 3 часа позже) составляет 14 км/час. ОТВЕТ: скорость велосипедиста, пришедшего к финишу вторым равна 14 км/час. Проверим: 140÷14=10 (часов) - 2-ый велосипедист 140:(14+6)=140÷20=7 (часов) - 1-ый влосипедист 10-7=3 часа разницы