Проведем в параллелограмме ABCD диагональ BD.
Рассмотрим треугольники ABD и CDB.
1) сторона BD — общая
2)∠ABD=∠CDB (как внутренние накрест лежащие при AB∥CD и секущей BD)
3) ∠ADB=∠CBD (как внутренние накрест лежащие при AD∥BC и секущей BD)
Значит, ∆ABD= ∆CDB (по стороне и двум прилежащим к ней углам).Из равенства треугольников следует равенство соответствующих сторон:AB=CD, AD=BCи равенство соответствующих углов:∠A=∠C.В пунктах 2) и 3) обосновано, что ∠ABD=∠CDB и ∠ADB=∠CB.Следовательно,∠ABC=∠ABD+∠CBD=∠CDB+∠ADB=∠ADC,то есть, ∠B=∠D.Что и требовалось доказать.