Четырёхугольник ABCD со сторонами AB=11 и CD=41 вписан в окружность. Диагонали AC и BD пересекаются в точке K , причём ∠AKB=60∘ . Найдите радиус окружности, описанной около этого четырёхугольника.
Угол между двумя пересекающимися хордами равен полусумме высекаемых ими дуг. Значит градусная мера дуги АВ плюс градусная мера дуги СD равна 120°. Следовательно, сумма центральных углов Пусть Длина хорды равна L=2R*Sin(α/2), где α - центральный угол, опирающийся на дугу, стягиваемую хордой. В нашем случае: 11=2R*Sin(α/2) и 41=2R*Sin(β/2). Разделим первое уравнение на второе. 11/41=Sin(α/2)/Sin(β/2). Но β/2=60°-α/2. Тогда 11/41=Sin(α/2)/Sin(60-α/2) (1). Пусть теперь α/2=γ (для простоты написания). Далее сплошная тригонометрия. По формуле приведения: Sin(60°-γ)=Sin60°*Cosγ-Cos60°*Sinγ или Sin(60°-γ)=(√3/2)*Cosγ-(1/2)*Sinγ. Подставим это значение в уравнение (1): 11/41=Sin(γ)/[(√3/2)*Cosγ-(1/2)*Sinγ] или (11√3/2)*Cosγ-(11/2)*Sin(γ)=41Sin(γ) или (11√3)*Cosγ=93Sin(γ) (2). Мы знаем, что Cos²γ+Sin²(γ)=1. Тогда, возведя уравнение (2) в квадрат, получим: 363*(1-Sin²(γ))=8649*Sin²(γ). Отсюда Sin²(γ)=363/9012≈0,04, а Sin(γ)=0,2. Помня, что мы приняли α/2=γ, имеем: 11=2R*Sin(γ) или R=11/2*0,2=27,5. Ответ: R=27,5.