1.Упростите выражение :((x/y) + (y/x))умножить ** (x^2y^2/x^2+y^2) - xy2.Упростите...

0 голосов
43 просмотров

1.Упростите выражение :
((x/y) + (y/x))умножить на (x^2y^2/x^2+y^2) - xy
2.Упростите выражение:
((2ab/a^3-b^3)+(a-b/a^2+ab+b^2)):a^2+b^2/a-b
3.Докажите тождество:
((1/x)-(1/x^2)):((x-1)/x)-(1/x)+(x/x-2)-(x/x+2)=4x/x^2-4


Алгебра (37 баллов) | 43 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

1.Упростите выражение :
(\frac{x}{y}+\frac{y}{x})(\frac{x^2y^2}{x^2+y^2})-xy \\ \\ 
1) \frac{x}{y}+\frac{y}{x}= \frac{x^2+y^2}{xy} \\ \\ 
2) \frac{x^2+y^2}{xy}*\frac{x^2y^2}{x^2+y^2}=xy \\ \\ 
3) xy-xy=0

2.Упростите выражение:
(\frac{2ab}{a^3-b^3}+\frac{a-b}{a^2+ab+b^2}):\frac{a^2+b^2}{a-b} \\ \\ 
1) \frac{2ab}{a^3-b^3}+\frac{a-b}{a^2+ab+b^2}= \frac{2ab}{(a-b)(a^2+ab+b^2)}+\frac{a-b}{a^2+ab+b^2}= \\ \\ =\frac{2ab+(a-b)^2}{(a-b)(a^2+ab+b^2)}=\frac{2ab+a^2-2ab+b^2}{(a-b)(a^2+ab+b^2)}=\frac{a^2+b^2}{(a-b)(a^2+ab+b^2)} \\ \\ 
2) \frac{a^2+b^2}{(a-b)(a^2+ab+b^2)}:\frac{a^2+b^2}{a-b}=\frac{a^2+b^2}{(a-b)(a^2+ab+b^2)}*\frac{a-b}{a^2+b^2}= \\ \\ 
=\frac{1}{a^2+ab+b^2}

3.Докажите тождество:
(\frac{1}{x}-\frac{1}{x^2}):\frac{x-1}{x}-\frac{1}{x}+\frac{x}{x-2}-\frac{x}{x+2}=\frac{4x}{x^2-4} \\ \\ 
1) \frac{1}{x}-\frac{1}{x^2}= \frac{x-1}{x^2} \\ \\ 
2) \frac{x-1}{x^2}:\frac{x-1}{x}=\frac{x-1}{x^2}*\frac{x}{x-1}= \frac{1}{x} \\ \\ 
3) \frac{1}{x}-\frac{1}{x}+\frac{x}{x-2}-\frac{x}{x+2}=\frac{x}{x-2}-\frac{x}{x+2}= \frac{x(x+2)-x(x-2)}{(x-2)(x+2)} =\frac{4x}{x^2-4}

(6.3k баллов)