Помогите решить, пожалуйста. Радиус основания цилиндра равен 1, а высота равна 2 корень...

0 голосов
57 просмотров

Помогите решить, пожалуйста.

Радиус основания цилиндра равен 1, а высота равна 2 корень из 6. Отрезки АВ и СD - диаметры одного из оснований цилиндра, а отрезок АА1 - его образующая. Известно, что АD = корень из 3. Найдите косинус угла между прямыми A1C и BD.


Геометрия (853 баллов) | 57 просмотров
Дан 1 ответ
0 голосов
Правильный ответ
Прямые СА₁  и DВ скрещивающиеся, т.к. они не лежат в одной плоскости, не пересекаются и не параллельны, хотя и лежат в параллельных плоскостях АСС₁ А₁  и ВDD₁ B₁ 
Угол между скрещивающимися прямыми равен  углу между пересекающимися прямыми, соответственно параллельными данным.
АС|| ВD. 
Угол между А₁С и ВD равен углу между А₁С и АС.
Так как угол АDВ опирается на диаметр АВ, он - прямой.
Из треугольника АDВ найдем длину DВ по т.Пифагора. 
ВD= √( АВ²-АD² )=√(4-3)= 1
АС=ВD=1
АА₁С - прямоугольный треугольник. 
А₁С по т.Пифагора
А₁С²=А₁А²+АС²=25
А₁С=5
Косинус угла (А₁СА)=АС:А₁
cos (А₁ СА)=1:5=0,2
Косинус угла между скрещивающимися прямымиА₁ С и ВD равен0,2
image
(228k баллов)
0

Благодарю за подробные объяснения, теперь мне многое понятно.

0

Это очень хорошо.