Правильная призма — это прямая призма, основанием которой является правильный многоугольник. Боковые грани правильной призмы — равные прямоугольники.
Плоскость acc1 - это плоскость грани aa1c1c. Чтобы найти угол между прямой ab1 и плоскостью aa1c1c, надо из точки b1 опустить перпендикуляр b1h1 на эту плоскость (заметим, что этот перпендикуляр - высота равностороннего треугольника - основания призмы). Угол b1ah1 и будет искомым углом, который равен 45 градусам (дано).
Тогда в прямоугольном треугольнике ah1b1 катеты равны (Объем призмы равен произведению площади основания на высоту призмы. Площадь основания (равностороннего треугольника) равна а²√ 3/4, высота равна a*√2/2. Итак, V = (а²√ 3/4)*(a*√2/2) = a³√6/8. Подставляем значение а=2√6 и получаем: V=[(2√6)*(2√6)*(2√6)]*(√6/8) = 36.
Ответ: Объем призмы равен 36.