3\ mg]-?;\\
M(T_x)=3\ mg;\\
M(T_x)=M_0\cdot2^{-\frac{T_x}{T}};\\
T_x-?;\\
\frac{M(T_x)}{M_0}=2^{-\frac{T_x}{T}};\\
\frac{M_0}{M(T_x)}=2^{\frac{T_x}{T}};\\
\log_2{\frac{M_0}{M(T_x)}}=\log_2{2^{\frac{T_x}{T}}};\\
\log_2{\frac{M_0}{M(T_x)}}=\frac{T_x}{T};\\
T_x=T\cdot\log_2\frac{M_0}{M(T_x)}=5,3^d\cdot\log_2{\frac{12\ mg}{3\ mg}}=\\
=5,3^d\cdot\log_2\frac{12}{3}=5,3^d\cdot\log_24=5,3\cdot\log_22^2=5,3^d\cdot2=10,6^d;\\
" alt="M(t)=M_0\cdot2^{-\frac tT};\\
M_0=12\ mg;\\
T=5,3^d;\\
T_x[M(t)>3\ mg]-?;\\
M(T_x)=3\ mg;\\
M(T_x)=M_0\cdot2^{-\frac{T_x}{T}};\\
T_x-?;\\
\frac{M(T_x)}{M_0}=2^{-\frac{T_x}{T}};\\
\frac{M_0}{M(T_x)}=2^{\frac{T_x}{T}};\\
\log_2{\frac{M_0}{M(T_x)}}=\log_2{2^{\frac{T_x}{T}}};\\
\log_2{\frac{M_0}{M(T_x)}}=\frac{T_x}{T};\\
T_x=T\cdot\log_2\frac{M_0}{M(T_x)}=5,3^d\cdot\log_2{\frac{12\ mg}{3\ mg}}=\\
=5,3^d\cdot\log_2\frac{12}{3}=5,3^d\cdot\log_24=5,3\cdot\log_22^2=5,3^d\cdot2=10,6^d;\\
" align="absmiddle" class="latex-formula">
Ответ 10,6 дней