Диагонали АС и BD трапеции ABCD пересекаются в точке К. Площадь треугольника АВК равна...

0 голосов
76 просмотров

Диагонали АС и BD трапеции ABCD пересекаются в точке К. Площадь треугольника АВК равна 24,а ВК :КD =1:4. Найдите площадь трапеции


Геометрия (33 баллов) | 76 просмотров
Дано ответов: 2
0 голосов

Трудная задачка. Тут надо представлять площади треугольников. Во-первых, площадь трапеции равна сумме площадей треугольников ABK, BKC,CKD и AKD.Площади треугольников ABK и DCK соотносятся как 4:1, угол BKA= углу DKC(вертик.), площадь треугольника равна половине произведения сторон треугольника, образующих угол на его синус, тогда площадь треугольника KCD равна 0,5*4x( 4x - этоKD, x - это BK)*KC*sinA, площадь треугольника AKB равна 0,5*x*AK*sinA, сократив дробь, мы получим AK=KC, пусть это y. Площадь треугольника AKD равна 0,5*y*4x*sinA(синусы смежных углов равны), 2xysinA, мы знаем, что площадь CKD равна 0,5*4x*y*sinA, то есть площади обоих треугольников равны 96. Теперь с теми двумя: площади их будут равны 0,5*x*y*sinA, площади обоих равны по 26. А теперь складываем их площади, получаем площадь трапеции: 26*2+96*2=2(26+96)=244

(5.0k баллов)
0 голосов

Я обозначу площадь трапеции Sabcd = S;
1) площади треугольников ABK и CDK равны.
В самом деле, если положить угол AKB = Ф, то
Sadk = AK*BK*sin(Ф)/2; Scdk = CK*DK*sin(Ф)/2; и BK/DK = CK/AK; то есть BK*AK = CK*DK; Поэтому площадь трапеции равна S = Sakd + Sbkc + 2*Sakb;
2) из вершины C проводится прямая CE II BD; точка E лежит на продолжении AD. Ясно, что DBCE - параллелограмм, и DE = BC; то есть AE = AD + BC;
Следовательно, площадь треугольника ACE равна площади трапеции ABCD, поскольку у них общая высота (расстояние от точки C до AD) и одинаковые средние линии. 
Sabcd = Sace = S;
3) треугольник ACE очевидно подобен треугольникам AKD и BKC; причем, если сравнивать соответствующие стороны, то 
BK/CE = 1/5; DK/CE = 4/5; (это так в условии ЗАДАНО :) )
Отсюда Sbkc = S*(1/25); Sakd = S*(16/25);
4) S = 2*24 + S*(1/25) + S*(16/25);
S = 150;

(69.9k баллов)
0

Площади четырех треугольников .на которые диагонали делят трапецию - 6, 96, 24, 24

0

Ну, если уж решать, как умный ArtemCoolAc, то пусть BK = x; KC = y; DK = 4x; AK = 4y; тогда Sabk = 24 = 4y*x*sin(Ф)/2; Sckd = y*4x*sin(Ф)/2 = 24; Sbkc = y*x*sin(Ф)/2 = 24/4 = 6; S = 4x*4y*sin(Ф)/2 = 16*6 = 96; это решение несколько туповато :)) но результат дает быстро. Я уже тут года полтора назад приводил его.

0

не хочу искать ошибку у Артема, лень :) Ответ 150.