В треугольнике ABC, площадь которого равна S, проведены биссектриса CE и медиана BD,...

0 голосов
45 просмотров

В треугольнике ABC, площадь которого равна S, проведены биссектриса CE и медиана BD, пересекающиеся в точке O. Найти площадь четырехугольника ADOE, еслиBC=a, AC=b.


Геометрия (210 баллов) | 45 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Медиана ВД делит сторону АС на АД=СД=b/2.
Биссектриса делит противоположную сторону на части, пропорциональные прилежащим к ней сторонам: ВО/ОД=ВС/СД=a*2/b.
ВД=ВО+ОД=ВО+b*BO/2a=BO(2a+b)/2a.
Тогда ВО/ВД=BO*2a/BO(2a+b)=2a/(2a+b).
 Аналогично ВЕ/ЕА=ВС/АС=а/b. AB=BE+EA=BE+b*BE/a=BE(a+b)/a, значит ВЕ/АВ=а/(а+b). Площади Sabd=1/2*АB*BД*sin B, Sbeo=1/2*BE*BO*sin B.
Тогда Sbeo/Sabd=BE*BO/AB*BД=а/(а+b) * 2a/(2a+b)=2a²/(a+b)(2a+b).
Медиана разбивает треугольник на два треугольника одинаковой площади,
значит Sabc=2Sabd, Sabd=S/2.
 Тогда Sbeo=S*a²/(a+b)(2a+b)
Площадь АДОЕ равна
Sадое=Sabd-Sbeo=S/2-S*2a²/(a+b)(2a+b)=S(1/2-2a²/(a+b)(2a+b))=S*b*(3a+b)/2(a+b)(2a+b).

(101k баллов)