уравнение 4sin^2x - 2cos^2x - sinx=0

0 голосов
36 просмотров

уравнение 4sin^2x - 2cos^2x - sinx=0


Алгебра | 36 просмотров
Дан 1 ответ
0 голосов

Трансформируем 2cos²x в 2(1-sin²х)
Получаем 4sin²x-2(1-sin²x)-sinx=0
6sin²x-sinx-2=0
t=sinx t∈{-1:1}
6t²-t-2=0
D=49
t1=-1/2 t2=2/3
sinx=-1/2
x= (-1)^(k+1) x pi/6 + πn, n∈z
sinx=2/3
x= (-1)^(k) x arcsin2/3 + πn, n∈z


(410 баллов)