Докажите что для любого действительного числа х справедливо неравенство x^2-6x+10>0

0 голосов
301 просмотров

Докажите что для любого действительного числа х справедливо неравенство x^2-6x+10>0


Алгебра (45 баллов) | 301 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Решение задачи может быть произведено несколькими способами. Первый способ - классический. Выделим полный квадрат в этом выражении и посмотрим, к чему дело придёт. Надеюсь, с техникой выделения полного квадрата все знакомы, поэтому не комментирую этот шаг.
x^2 - 6x + 10 = (x^2 - 2 * 3x + 9) - 9 + 10 = (x-3)^2 + 1 - раскройте скобки, проверьте, что я ничего не изменил.
В силу того, что (x-3)^2 >= 0, имеем, что
(x-3)^2 + 1 >= 1, то есть все значения этого выражения не меньше 1. Откуда и следует доказываемое равенство.
 
Либо же можно было просто заметить, что дискриминант трёхчлена x^2 - 6x + 10 отрицательный. Геометрически это означает, что на координатной плоскости парабола эта лежит целиком над осью OX. В силу того, что и ветви этой параболы направлены вверх, видим, что все значения этой параболы будут положительными, что и требовалось доказать. Это второй способ решения.

(6.8k баллов)