Найдите найменьшее значение функции f(x) 1+8x-икс в квадрате ** промежутке [2;5]

0 голосов
47 просмотров

Найдите найменьшее значение функции f(x) 1+8x-икс в квадрате на промежутке [2;5]


Алгебра (12 баллов) | 47 просмотров
Дан 1 ответ
0 голосов

1) для начала находим производную
f'(x)=8-2x8-2x=0-точка подозрительная на экстремум
x=4 при переходе через эту точку производная меняет знак с + на -, значит это локальный максимум. Терь находим значения функции в граничных точках и в точке локального максимума и выбираем большее
f(2)=1+8*2-2^2=1+16-4=13
f(4)=1+8*4-4^2=1+32-16=17
f(5)=1+8*5-5^2=1+40-25=16 наибольшее значение в точке x=4. Оно равно 17

(534 баллов)