(x^2-9)*log x по основанию 1/3 < или = 0

0 голосов
26 просмотров

(x^2-9)*log x по основанию 1/3 < или = 0


Математика (15 баллов) | 26 просмотров
Дан 1 ответ
0 голосов
Правильный ответ
image0\\\\a)\; \left \{ {{x^2-9 \leq 0} \atop {log_{\frac{1}{3}}x \geq 0}} \right. \; \left \{ {{(x-3)(x+3) \leq 0} \atop {log_{\frac{1}{3}}x \geq log_{\frac{1}{3}}1}} \right. \left \{ {{x\in [-3,3]} \atop {x\in (-\infty,1],x>0}} \right. \; \to \; x\in(0,1]\\\\b)\; \left \{ {{x^2-9 \geq 0} \atop {log_{\frac{1}{3}}x \leq 0}} \right. \; \left \{ {{x\in (-\infty,-3]U[3,+\infty)} \atop {x\in [1,+\infty),x>0}} \right. \; \; \to \; \; x\in [3,+\infty) " alt="(x^2-9)log_{\frac{1}{3}}x \leq 0\; ,\; OOF:\; x>0\\\\a)\; \left \{ {{x^2-9 \leq 0} \atop {log_{\frac{1}{3}}x \geq 0}} \right. \; \left \{ {{(x-3)(x+3) \leq 0} \atop {log_{\frac{1}{3}}x \geq log_{\frac{1}{3}}1}} \right. \left \{ {{x\in [-3,3]} \atop {x\in (-\infty,1],x>0}} \right. \; \to \; x\in(0,1]\\\\b)\; \left \{ {{x^2-9 \geq 0} \atop {log_{\frac{1}{3}}x \leq 0}} \right. \; \left \{ {{x\in (-\infty,-3]U[3,+\infty)} \atop {x\in [1,+\infty),x>0}} \right. \; \; \to \; \; x\in [3,+\infty) " align="absmiddle" class="latex-formula">

Otvet:\; x\in (0,1]U[3,+\infty)
(831k баллов)