Примечание. Условие сформулировано недостаточно общно. Чтобы сумма таких векторов была равна нуль-вектору, нужно еще чтобы они лежали на одной прямой и их модули полностью накладывались друг на друга.
Приведу два способа доказательства - один основан на здравом смысле, а второй - на математике.
1. *Здравый смысл*.
Вектор, нестрого говоря, - это направленный отрезок, а минус вектор - это вектор той же длины, только смотрящий в противоположную сторону. По определению суммы векторов, в результате суммирования, должен получиться вектор, начало которого совпадает с началом первого слагаемого, а конец - с концом второго. Но у нас векторы находятся на одной прямой, а их отрезки полностью совпадают; - выходит, начало первого совпадает с концом второго. Стало быть, раз они совпадают, сумма равна нулю.
2. *Математика*.
Вообще говоря, вектор - это такой тензор ранга (0,1). То есть, если есть n-мерное пространство (в нашем случае, n=3), то вектор задается табличкой из чисел размерами (1*n) или (n*1) (в нашем случае, столбцом или строчкой из трех чисел - координат).
Пускай теперь вектор, скажем, имеет координаты . Записывается это так:
.
Тогда второй вектор:
.
И их сумма:
Вот и все. Получился нуль-вектор.