Даны вершины треугольника ABC: A(3; -1),B(4; 2) и C(-2; 0). Напишите уравнения его сторон

0 голосов
501 просмотров

Даны вершины треугольника ABC: A(3; -1),B(4; 2) и C(-2; 0). Напишите уравнения его сторон


Математика (12 баллов) | 501 просмотров
Дан 1 ответ
0 голосов

Треугольник АВС образуется пересечением прямых, у которых уравнения имеют общий вид: у=kx+b.
Чтобы найти уравнения сторон треугольника, нужно найти частные уравнения этих прямых.
1) Сторона АВ: прямая у=kx+b через точки с координатами (3;-1) и (4;2). Подставляем их поочередно в уравнение общего вида, имеем систему из двух уравнений: 3k+b=-1 и 4k+b=2.
b=2-4k,  3k+2-4k=-1, -k=-3, k=3, b=2-4*(-3)=2+12=14
AB: y=3x+14
2) Сторона ВС: аналогично. 4k+b=2 и -2k+b=0
b=2k, 4k+2k=2, 6k=2, k=1/3, b=2*1/3=2/3
BC:  y=1/3x+2/3
3) Сторона AC: 3k+b=-1 и -2k+b=0
b=2k,  3k+2k=-1,  5k=-1,  k=-1/5, b=-2/5
AC: y=-1/5x-2/5

(5.3k баллов)