Решение:
1) область определения (-∞; ∞)
2) множество значений функции (-∞; ∞)
3) Проверим является ли функция четной или не четной:
y(x)=1/6x³-x²+1
y(-x)=-1/6x³-x²+1, Так как у (-х) ≠-у (х) у (-х) ≠у (х) , то функция не является ни четной ни не четная.
4) Найдем нули функции:
при х=0; у=1 - график перечекает ось ординат в точке (0;1)
при у=0 получаем уравнение: 1/6x³-x²+1=0
уравнение не имеет рациональных корней.
5) Найдем промежутки возрастания и убывания функции а так же точки экстремума:
y'=0.5x²-2x; y'=0
0.5x²-2x=0
0.5x(x-4)=0
x1=0
x2=4
Так как на промежутках (-бескон; 0) и (4; бесконеч) y'> 0, то на этих промежутках функция возрастатет.
Так как на промежуткe (0;4) y'< 0, то на этом промежутке функция убывает.
Так как при переходе через точку х=4 производная меняет свой знак с - на + то в этой точке функция имеет минимум: у (4 )=64/6-16+1=-13/3
Так как при переходе через точку х=0 производная меняет свой знак с + на - то в этой точке функция имеет максимум: у (0 )=1
6) Найдем промежутки выпуклости и точки перегида:
y"=x-2; y"=0
x-2=0
x=2
Tак как на промежуткe (-бесконеч; 2) y"< 0, то на этом промежутке график функции направлен выпуклостью вверх
Так как на промежутке (2; бескон) y"> 0, то на этом промежутке график функции направлен выпкулостью вниз.
Точка х=2; является точкой перегиба.
у (2)=8/6-4+1=-5/3
7) проверим имеет ли график данной функции асимптоты^
а) так как функция не имеет точек разрыва, то она не имеет вертикальных асимптот.
Проыерим имеет ли она наклонные асимптоты вида y=kx+b:
k=lim (прих->∞) (y(x)/x)=lim (прих->∞) (1/6x²-x+1/x)=∞
Так как предел бесконечен, то наклонных асимптот функция не имеет