Log3(7+2x)=log3(3-2x)+2

0 голосов
58 просмотров

Log3(7+2x)=log3(3-2x)+2


Алгебра (23 баллов) | 58 просмотров
Дано ответов: 2
0 голосов

Log3(7+2x)=log3(3-2x)+log3(9)
log3(7+2x)=log3((3-2x)*9)
7+2x=27-18x
20x=20
x=1

(2.7k баллов)
0 голосов
\log_3(7+2x)=\log_3(3-2x)+2

ОДЗ: image0} \atop {3-2x>0}} \right. \to \left \{ {{x>-3.5} \atop {x<1.5}} \right. " alt=" \left \{ {{7+2x>0} \atop {3-2x>0}} \right. \to \left \{ {{x>-3.5} \atop {x<1.5}} \right. " align="absmiddle" class="latex-formula">
Свойство логарифма \log_a a^n=n
\log_3(7+2x)=\log_3(3-2x)+\log_33^2 \\ \log_3(7+2x)=\log_3(3^2(3-2x)) \\ 7+2x=9(3-2x) \\ 7+2x=27-18x \\ 20x=20 \\ x=20:20 \\ x=1

Ответ: 1.