Дан равнобедренный треугольник с боковыми сторонами по 5 см и основанием 6,чему равна...

0 голосов
31 просмотров

Дан равнобедренный треугольник с боковыми сторонами по 5 см и основанием 6,чему равна площадь этого треугольника


Геометрия (31 баллов) | 31 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

Формула Герона
S=√p(p-a)(p-b)(p-c)
a,b,c-стороны треугоьника
p-полупериметр

р=(5+5+6)/2=8 см
S=√8*(8-5)*(8-5)*(8-6)=√8*3*3*2=3*4=12(см²)

(302k баллов)
0

Спасибо)))

0 голосов

Можно сделать задачу гораздо проще. Найдем высоту из прямоугольного треугольника ABH, где H-высота, опущенная из точки B, AB=BC.
Боковая сторона равна 5, высота делит основание пополам, значит половина основания будет равна 3. Получился "Египетский треугольник" со сторонами 3, 4,5. Значит высота равна 4. Площадь треугольника в таком случае равна полупроизведению стороны основания на высоту, равна S= \frac{1}{2}*6*4=12
Ответ: 12.

(4.9k баллов)