а). Проведем высоту ДН. Из треугольника ЕНД: угол НЕД=60гр., за условием задачи; угол ЕНД=90гр., так, как это угол при высоте; отсюда угол ЕДН=30гр.
Угол ВДА=НДА-ВДН. ВДН=30гр., АДН=90гр., как угол при высоте, отсюда угол ВДА=60гр.
Так, как ВД - бисектриса, то угол ВДА=ВДС=60гр. Отсюда угол АДС=120гр., отсюда угол ВСД=180гр.-АДС=180-120=60гр.
Ответ: 120гр., 60гр.
б). Проведем высоту ДН. Из треугольника ЕНД: угол НЕД=60гр., за условием задачи; угол ЕНД=90гр., так, как это угол при высоте; отсюда угол ЕДН=30гр.
Угол ВДА=НДА-ВДН. ВДН=30гр., АДН=90гр., как угол при высоте, отсюда угол ВДА=60гр.
Так, как ВД - бисектриса, то угол ВДА=ВДС=60гр. Отсюда угол АДС=120гр., отсюда угол ВСД=180гр.-АДС=180-120=60гр.
Из треугольника ЕСД: угол СЕД=ДСЕ=60гр., отсюда можно зделать вывод, что этот треугольник равнобедренный, а значит ЕД=СД, и ДН будет медианой бисектрисой и высотой равнобедреного треугольника. Отсюда ЕН=НС=4/2=2см.
Из треугольника НСД: сторона НС лежит против угла 30гр., у прямоугольном треугольнике, отсюда можно узнать ее гипотенузу: 2*2=4см. Сторона ВС=ВЕ+ЕС=3+4=7см. Отсюда сторона СД=4см. Отсюда периметр треугольника равен (4+7)*2=22см.
Ответ:22см.
в). Четереугольник АВЕД будет равнобедренной трапецыей так, как сторона ВЕ паралельна стороне АД, и при основании угли равные ( угол АВЕ=120гр.; ВЕД=120грю; ВАД=60гр.; ЕДА=60гр.
Разьяснила, как можно по доходчевей))) Поставь пожалуйста лучшее решение мне, тебе несколько пунктов вернеться, и мне несколько начислиться))) Если что то не понятно, обращайся))