![image](https://tex.z-dn.net/?f=log_+%5Cfrac%7B1%7D%7B3%7D+%284-x%29+%5Cgeq+0%0A%5C%5C%5C%0A+%5Cleft+%5C%7B+%7B%7B4-x%3E0%7D+%5Catop+%7B4-x+%5Cleq+%28+%5Cfrac%7B1%7D%7B3%7D+%29%5E0%7D%7D+%5Cright.+%0A%5C%5C%5C%0A+%5Cleft+%5C%7B+%7B%7Bx%3C4+%5Catop+%7B4-x+%5Cleq+1%7D%7D+%5Cright.+%0A%5C%5C%5C%0A+%5Cleft+%5C%7B+%7B%7Bx%3C4+%5Catop+%7Bx++%5Cgeq+3%7D%7D+%5Cright.+%0A%5C%5C%5C%0Ax%5Cin%5B3%3B4%29)
0} \atop {4-x \leq ( \frac{1}{3} )^0}} \right.
\\\
\left \{ {{x<4 \atop {4-x \leq 1}} \right.
\\\
\left \{ {{x<4 \atop {x \geq 3}} \right.
\\\
x\in[3;4)" alt="log_ \frac{1}{3} (4-x) \geq 0
\\\
\left \{ {{4-x>0} \atop {4-x \leq ( \frac{1}{3} )^0}} \right.
\\\
\left \{ {{x<4 \atop {4-x \leq 1}} \right.
\\\
\left \{ {{x<4 \atop {x \geq 3}} \right.
\\\
x\in[3;4)" align="absmiddle" class="latex-formula">
Ответ: 3≤х<4</u>