![image](https://tex.z-dn.net/?f=cos+%5Calpha+%3D%5Cfrac%7B5%7D%7B13%7D%3E0%2C%5C%3B+sin+%5Calpha+%3C0%5C%3B+pri%5C%3B++%5Calpha+%5Cin+%5Cfrac%7B3%5Cpi+%7D%7B2%7D%2C2%5Cpi+%29%5C%5C%5C%5Csin+%5Calpha+%3D-%5Csqrt%7B1-cos%5E2+%5Calpha+%7D%3D-%5Csqrt%7B1-%5Cfrac%7B25%7D%7B169%7D%7D%3D-%5Cfrac%7B12%7D%7B13%7D%5C%5C%5C%5Csin2+%5Calpha+%3D2sin+%5Calpha+cos+%5Calpha+%3D-2%5Ccdot+%5Cfrac%7B5%7D%7B13%7D%5Ccdot+%5Cfrac%7B12%7D%7B13%7D%3D-%5Cfrac%7B120%7D%7B169%7D)
0,\; sin \alpha <0\; pri\; \alpha \in \frac{3\pi }{2},2\pi )\\\\sin \alpha =-\sqrt{1-cos^2 \alpha }=-\sqrt{1-\frac{25}{169}}=-\frac{12}{13}\\\\sin2 \alpha =2sin \alpha cos \alpha =-2\cdot \frac{5}{13}\cdot \frac{12}{13}=-\frac{120}{169}" alt="cos \alpha =\frac{5}{13}>0,\; sin \alpha <0\; pri\; \alpha \in \frac{3\pi }{2},2\pi )\\\\sin \alpha =-\sqrt{1-cos^2 \alpha }=-\sqrt{1-\frac{25}{169}}=-\frac{12}{13}\\\\sin2 \alpha =2sin \alpha cos \alpha =-2\cdot \frac{5}{13}\cdot \frac{12}{13}=-\frac{120}{169}" align="absmiddle" class="latex-formula">