Помогите пожалуйста! докажите, что при любом натуральном значении n выполняет...

0 голосов
57 просмотров

Помогите пожалуйста!
докажите, что при любом натуральном значении n выполняет равенство:

1^2+2^2+3^2+........n^2= n(n+1)(2n+1)
----------------
6





Алгебра (358 баллов) | 57 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Доказательство методом математической индукции
База индукции. При n=1 утверждение справедливо.
Действительно 1^2=\frac{n(n+1)(2n+1)}{6}

Гипотеза индукции. Пусть утверждение выполняется для некоторого натурального n=k, т.е. верно равенство
1^2+2^2+3^2+...+k^2=\frac{k(k+1)(2k+1)}{6}

Индукционный переход. Докажем что тогда утверждение справедливо при n=k+1, т.е. что справедливо равенство
1^2+2^2+3^2+..+k^2+(k+1)^2=\frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}
или переписав правую сторону равенства, предварительно упростив
1^2+2^2+3^2+...+k^2+(k+1)^2=\frac{(k+1)(k+2)(2k+3)}{6}

1^2+2^2+3^2+...+k^2+(k+1)^2=
используем гипотезу
\frac{k(k+1)(2k+1)}{6}+(k+1)^2=\\\\(k+1)(\frac{k(2k+1)}{6}+(k+1)}=\\\\(k+1)(\frac{2k^2+k+6k+6}{6}=\\\\\frac{(k+1)(2k^2+7k+6)}{6}=\\\\\frac{(k+1)(2k^2+4k+3k+6)}{6}=\\\\\frac{(k+1)((2k^2+4k)+(3k+6))}{6}=\\\\\frac{(k+1)(2k(k+2)+3(k+2)}{6}=\\\\\frac{(k+1)(k+2)(2k+3)}{6}

Согласно принципу математической индукции данное утверждение справедливо для любого натурального n. Доказано

(409k баллов)
0

Спасибо большое!