![image](https://tex.z-dn.net/?f=%7Cf%28x%29%7C%3EA%5C%3B+%5C%3B+%5C%3B+%5Cto+%5C%3B+%5C%3B+%5C%3B+f%28x%29%3EA%5C%3B+%5C%3B+ili%5C%3B+%5C%3B+f%28x%29%3C-A%5C%5C%5C%5C%5C%5C%7Cx%5E2-10%7C%3E9x%5C%5C%5C%5C1%29%5C%3B+x%5E2-10%3E9x%5C%5C%5C%5Cx%5E2-9x-10%3E0%2C%5C%3B+%5C%3B+x_1%3D-1%2Cx_2%3D10%5C%5C%5C%5C%28x-10%29%28x%2B1%29%3E0%2C%5C%3B+%5C%3B+%2B%2B%2B%28-1%29---%2810%29%2B%2B%2B%5C%5C%5C%5Cx%5Cin+%28-%5Cinfty%2C-1%29U%2810%2C%2B%5Cinfty%29%5C%5C%5C%5C2%29x%5E2-10%3C-9x%5C%5C%5C%5Cx%5E2%2B9x-10%3C0%2Cx_1%3D1%2Cx_2%3D-10)
A\; \; \; \to \; \; \; f(x)>A\; \; ili\; \; f(x)<-A\\\\\\|x^2-10|>9x\\\\1)\; x^2-10>9x\\\\x^2-9x-10>0,\; \; x_1=-1,x_2=10\\\\(x-10)(x+1)>0,\; \; +++(-1)---(10)+++\\\\x\in (-\infty,-1)U(10,+\infty)\\\\2)x^2-10<-9x\\\\x^2+9x-10<0,x_1=1,x_2=-10" alt="|f(x)|>A\; \; \; \to \; \; \; f(x)>A\; \; ili\; \; f(x)<-A\\\\\\|x^2-10|>9x\\\\1)\; x^2-10>9x\\\\x^2-9x-10>0,\; \; x_1=-1,x_2=10\\\\(x-10)(x+1)>0,\; \; +++(-1)---(10)+++\\\\x\in (-\infty,-1)U(10,+\infty)\\\\2)x^2-10<-9x\\\\x^2+9x-10<0,x_1=1,x_2=-10" align="absmiddle" class="latex-formula">
3) Объудиняем множества, получим