lg(3x²+12x+19)-lg(3x+4)=1
ОДЗ 3х³+12х+19>0
D=144-228=-84<0⇒x-любое<br>3х+4>0⇒x>-4/3
x∈(-4/3;∞)
lg(3x²+12x+19) /(3x+4)=1
(3x²+12x+19) /(3x+4)=10
3x²+12x+19-30x-40=0
3x²-18x-21=0
x²-6x-7=0
x1+x2=6 U x1*x2=-7⇒x1=-1 U x2=7
lg(x^2+2x-7)-lg(x-1)=0
ОДЗ x²+2x-7>0
D=4+28=32
x1=(-2-4√2)/2=-1-2√2
x2=-1+2√2
x<-1-2√2 U x>-1+2√2
x-1>0⇒x>1
x∈(-1+2√2)
lg(x^2+2x-7)/(x-1)=0
(x^2+2x-7)/(x-1)=1
x²+2x-7-x+1=0
x²+x-6=0
x1+x2=-1 U x1*x2=-6
x1=-3∉ОДЗ
х2=2
log5(x^2+8)-log5(x+1)=3log5 2
ОДЗ
x²+8>0⇒x-любое
x+1>0⇒x>-1
x∈(-1;∞)
log5(x^2+8)/(x+1)=log5 8
(x^2+8)/(x+1)= 8
x²+8-8x-8=0
x²-8x=0
x(x-8)=0
x=0 U x=8