Пусть мальчиков m, девочек d. Тогда
100% * m + 100% * d = 130% * m + 50% * d
30 % m = 50% d
3m = 5d
Так как 30% * m = 3m/10 - целое число, то m делится на 10. Обозначим m = 10M и подставим в равенство.
3 * 10M = 5d
6M = d
Отсюда число девочек делится на 6 (заметим, что при этом условии 50% девочек - гарантированно целое число). После обозначения d = 6D равенство превращается в издевательское:
6M = 6D
M = D
Очевидно, минимум будет достигаться, если M = D = 1. Тогда m = 10 и d = 6.
Можно было сразу после заключения о том, что m делится на 10, начать перебирать возможные m. Ответ при этом получился бы быстрее.