Найти cosx, если sinx=0,8 и п/2<x<п
По основному тригонометрическому тождеству: Т.к. угол лежит во второй четверти, то косинус принимает отрицательные значения: Ответ:
Спасибо большое)))
Sin^2 x + cos^2 x = 1; x ∈(pi/2; pi); ⇒ cos x < 0;<br>cos^2 x = 1 - sin^2 x= 1 -(0,8)^2 = 1 - 0,64= 0,36. cos x = - 0,6
Спасибо)))
косинус во второй четверти отрицательный
и квадратный корень из 0,36 никак не 0,8